Homework \#8 of Topology II

Due Date: May 1, 2018

1. Let x, y be the standard coordinates and r, θ the polar coordinates on $\mathbb{R}^{2}-0$. (a) Show that the Poincare dual of the ray $\{(x, o) \mid x>0\}$ in $\mathbb{R}^{2}-0$ is $d \theta / 2 \pi$ in $H^{1}\left(\mathbb{R}^{2}-0\right)$.
(b) Show that the closed Poincare dual of the unit circle in $H^{1}\left(\mathbb{R}^{2}-0\right)$ is 0 , but the compact Poincare dual is the nontrivial generator $\rho(r) d r$ in $H_{c}^{1}\left(\mathbb{R}^{2}-0\right)$ where $\rho(r)$ is a bump function with total integral 1.(A bump function is a smooth function whose support is contained in osme disc and whose graph looks like a "bump".)
2. (a) Show that there is a direct product decomposition

$$
G L(n, \mathbb{R})=O(n) \times\{\text { positive definite symmetric matrices }\}
$$

(b) Use (a) to show that the structure group of any real vector bundle may be reduced to $O(n)$.
3. Compute $\operatorname{Vect}_{k}\left(S^{1}\right)$ the set of equivalence classes of isomorphic rank k vector bundles on S^{1}.
4. Use a Mayer-Vietoris argument as in proof of Thom isomorphism, show that if $\pi: E \rightarrow M$ is an orientable rank n bundle, then

$$
H_{c}^{*}(E) \simeq H_{c}^{*-n}(M)
$$

5. (Bott\&Tu Page 70) (a) Show that if θ is the standard angle function on \mathbb{R}^{2}, measured in the counterclockwise direction, then $d \theta$ is positive on the circle S^{1}.
(b) Show that if ϕ and θ are the spherical coordinate on S^{2}, the $d \theta \wedge d \phi$ is positive on sphere S^{2}.
6. (Bott\&Tu Page 72) There exist 1-form ξ_{α} on U_{α} such that

$$
\frac{1}{2 \pi} d \phi_{\alpha \beta}=\xi_{\beta}-\xi_{\alpha} .
$$

7. (Bott \&Tu Page 77) Let S^{n} be the unit sphere in \mathbb{R}^{n+1} and i the antipodal map on S^{n} :

$$
i:\left(x_{1}, \cdots, x_{n+1}\right) \rightarrow\left(-x_{1}, \cdots,-x_{n+1}\right)
$$

The real projective space $\mathbb{R} P^{n}$ is the quotient of S^{n} by the equivalence relation

$$
x \sim i(x), \text { for } x \in \mathbb{R}^{n+1} .
$$

(a) An invariant form on S^{n} is a form ω such that $i^{*} \omega=\omega$. The vector space of invariant forms on S^{n}, denoted by $\Omega^{*}\left(S^{n}\right)^{I}$, is a differential complex, and so the invariant cohomology is defined. Show that $H^{*}\left(\mathbb{R} P^{n}\right)=H^{*}\left(S^{n}\right)^{I}$.
(b) Show that the natural map $H^{*}\left(S^{n}\right)^{I} \rightarrow H^{*}\left(S^{n}\right)$ is injective.
(c) Give S^{n} the standard orientation (Page 70). Show that the antipodal map $i: S^{n} \rightarrow S^{n}$ is orientation-preserving for n odd and orientationreversing for n even.
(d) Show that the de Rham cohomology of $\mathbb{R} P^{n}$ is

$$
H^{q}\left(\mathbb{R} P^{n}\right)= \begin{cases}\mathbb{R} & \text { for } q=0 \\ 0 & \text { for } 0<q<n \\ \mathbb{R} & \text { for } q=n \text { odd } \\ 0 & \text { for } q=n \text { even }\end{cases}
$$

